

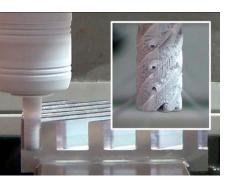
Lubricación MQL y Refrigeración Criogénica en procesos de mecanizado

LUBRICACIÓN MQL Y REFRIGERACIÓN CRIOGÉNICA en procesos de mécanizado

La tecnología del equipo **BeCold** combina la lubricación por cantidades mínimas de aceite (MQL) con la refrigeración que proporciona el CO₂ en estado líquido. Mediante la **combinación de estos dos sistemas** se consiguen unas excelentes prestaciones en el proceso de mecanizado.

Desde **HRE Hidraulic** se ofrecen diferentes series del equipo **BeCold** de manera que puedan ser adaptadas a distintas necesidades.

POR QUÉ UTILIZAR el mecanizado criogénico


Debido a la alta competitividad existente en el ámbito industrial, la **reducción de costes de producción** y la utilización de tecnologías con **reducido impacto ambiental** son imprescindibles para desarrollar nuevas aplicaciones.

El equipo **BeCold** utiliza un innovador sistema que, combinando la lubricación del MQL y la refrigeración que aporta el dióxido de carbono, consigue prestaciones que igualan, e incluso superan en algunos casos, a las del mecanizado húmedo tradicional.

La eliminación o reducción de los fluidos de corte tradicionales es la clave para lograr el éxito y las ventajas con las que cuenta el Mecanizado Criogénico lo sitúan como la mejor opción.

Dimensiones armario 500x500x300mm

I+D+i

journal of C	Danner Production 139 (2016) 440-449	
Contents	lists available at ScienceDirect Cleaner Production	
Journal o	of Cleaner Production	
ELSEVIER journal homepage	e: www.elsevier.com/locate/jclepro	
Cryoge	ND MANUFACTURING-GREEN TECHNOLOGY Vol. 4, No. 1, pp. 87-85 JANUARY 2017 87 ISSN 2288-6206 (Print ISSN 2788-6001 (Online)	
turning		
O. Pereira		
	r Combined Use of MQL and Cryogenic	
Gas in Machining		
	•	
	KATER RES TECHNOL. 2020;9(xx):8459-8468	
A	Available online at www.sciencedirect.com	at
	a 40 ±	
2-2453	nral 🛛	0
Jourr	nal of Materials Research and Technology	
ELSEVIER	www.jmrt.com.br	-10 C
Original Article		
J. J		
	of Inconel 718: cutting forces	
and tool wear	updatoi	
Octavio Pereira ^{a,*} , Ainhoa Celay Asier Fernández-Valdivielso ^a , L	ya ^b , Gorka Urbikaín ^b , Adrián Rodríguezª, . Noberto López de Lacalle ^{a,b}	
	'EHU), Parque Tecnológico de Bizkaia 202, 48170 Bilbao, Spain sity of the Basque Country (UPV/EHU), Plaza Torres de Quevedo s/n, 48013 Bilb	10, Spain

DOCUMENTOS

 $_{56}^{19}$ \circ \circ $_{15}^{20}$ \circ \circ \circ $^{20}_{20}$

AUMENTO DEL 80% en los últimos 5 años.

APLICACIONES principales

MILLING

I	Finishing	Tempered steel Inconel 718	○ ⊘	DRILLING	Peck drilling	Titanium Carbon / Glass fibre	
	Roughing	Stainless steel		TURNING	Conventional	AISI 304L	\bigcirc
		Aluminium				A C D	
		Cr-Ni steel			Hard-turning	ASP23	
		Tool steel	Ō				
		Titanium			🚺 Use i	s highly recommended	
		Structural steel	Õ		V due t	due to many advantages	
		Carbon / Glass fibre				ar to conventional ess, with cost savings	
		Plastics					

ARTÍCULOS recientes

CO, cryogenic milling of Inconel 718: cutting forces and tool wear https://doi.org/10.1016/j.jmrt.2020.05.118

Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. https://doi.org/10.1016/j.jclepro.2016.08.030

Nozzle design for combined use of MQL and cryogenic gas in machining. https://doi.org/10.1007/s40684-017-0012-3

Cryogenic hard turning of ASP23 steel using carbon dioxide. https://doi.org/10.1016/j.proeng.2015.12.523

Internal cryolubrication approach for Inconel 718 milling. https://doi.org/10.1016/j.promfg.2017.09.013

Manufacturing of human knee by cryogenic machining: Walking towards cleaner processes. https://doi.org/10.1016/j.promfg.2019.07.054

Colaboradores

HRE HIDRAULIC

HRE Hidraulic S.L.

C/ Ibaitarte 21 E-20870 Elgoibar (Gipuzkoa) Spain +34 943 742 130 - hre-hidraulic@hre.es - www.hre.es

